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a b s t r a c t 

Stable and conservative numerical boundary schemes are constructed such that they do not diminish 

the overall accuracy of the method for interior schemes of orders 4, 6, and 8 using both explicit (central) 

and compact finite differences. Previous attempts to develop stable numerical boundary schemes for non- 

linear problems have resulted in schemes which significantly reduced the global accuracy and/or required 

some form of artificial dissipation. Thus, the schemes developed in this paper are the first to not require 

this tradeoff, while also ensuring discrete conservation and allowing for direct boundary condition en- 

forcement. After outlining a general procedure for the construction of conservative boundary schemes of 

any order, a simple, yet novel, optimization strategy which focuses directly on the compressible Euler 

equations is presented. The result of this non-linear optimization process is a set of high-order, stable, 

and conservative numerical boundary schemes which demonstrate excellent stability and convergence 

properties on an array of linear and non-linear hyperbolic problems. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

High fidelity simulations of flow problems (such as Direct Nu-

merical Simulations) are usually performed more efficiently using

high order methods. For example, conservative, high-order numer-

ical methods are, in principle, well suited to the challenge of accu-

rately resolving the broadband physics of turbulence over long pe-

riods of time. In practice, however, numerical stability is not easily

achieved for high-order methods. In particular, when high order

finite differences are used, the computational stencil used in the

interior must be altered near the computational boundary for non-

periodic domains. 

Designing high-order numerical boundary schemes such that

they are stable for non-linear problems is a very difficult task [1,2] .

The most prevalent solution to this problem is to simply reduce

the order of the boundary schemes by roughly half [3–8] . In-

deed, this practice has become an accepted standard such that

many researchers simply do not report the modifications made to

the schemes near the boundaries. The problem with combining a

high order interior scheme with a reduced order boundary sten-

cil is that the overall order of accuracy will be limited to 1 more

than the boundary stencils [9] . Thus, pursuing a high-order inte-
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ior scheme while maintaining a significantly reduced order at the

oundary is not particularly efficient. 

The search for stable, high-order boundary schemes has a long

istory and is still an active field. Ref. [1] relied on the linear sta-

ility theory to frame the problem of finding stable schemes for

inear hyperbolic problems and used an eigenvalue search code to

nd stable 4 th order compact schemes as well explicit 5 th order

chemes for a 6 th order compact interior scheme. In a follow-up

ork, Ref. [10] utilized the energy method to design stable com-

act boundary schemes for interior orders up to 6 through the de-

elopment of the summation-by-parts simultaneous approximate

erm (SBP-SAT) method. This comes at the expense of imposing the

oundary conditions weakly via a penalty term added to the equa-

ions. Schemes which allow for direct imposition of the boundary

ondtions have proved to be very useful for DNS and so the focus

f the present work is on such methods. 

A different approach, developed in Ref. [11] , involves reducing

he grid spacing near the boundaries to stabilize the numerical

oundary schemes. The approach is based on the insight that the

nstabilities which typically develop when using one-sided differ-

nces near the boundary are simply a manifestation of the well

nown Runge phenomenon. The authors were able to generate

chemes with appropriate eigenvalue spectra of up to 22 nd order.

s presented, the boundary schemes were not conservative. Such

n approach would decrease the allowable timestep size for ex-

licit numerical integration. 

https://doi.org/10.1016/j.compfluid.2018.12.010
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Table 1 

Coefficients for first derivative central (ex- 

plicit) finite differences approximation of or- 

der 2 p given by Eq. (6) . 

p γ 1 γ 2 γ 3 γ 4 

2 2 
3 

− 1 
12 

3 3 
4 

− 3 
20 

1 
60 

4 4 
5 

− 1 
5 

4 
105 

− 1 
280 
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Another popular approach is to introduce a filtering operation

o stabilize the numerical scheme [12–14] . The constraints imposed

y high fidelity, DNS-type calculations, have motivated the search

or an alternate approach targeting the construction of stable, high-

rder, and conservative numerical boundary schemes which do not

equire modifications of the grid near the boundaries, artificial dis-

ipation, or weak enforcement of the boundary conditions. Rather

han attempting to develop a general theory of stability for non-

inear systems, the focus of this paper is on developing schemes

hich are stable for a particular system of interest: the non-linear

quations of fluid dynamics. Conservative schemes of overall ac-

uracy of orders 4, 6, and 8 (where the order of the numerical

oundary schemes is one less) are developed for both explicit and

ompact finite differences. This is achieved through a simple, yet

ovel, optimization strategy where we optimize directly on the

on-linear Euler equations rather than attempting to utilize a lin-

ar stability theory. The procedure relies on the introduction of

nough free parameters in the boundary stencils such that the

roblem admits solutions. Note that the focus of the present work

s on continuous solutions to the governing equations. The Euler

quations are only used as a stringent, zero-dissipation test case,

or times small enough so that singularities do not develop during

he simulation. 

The paper is organized as follows. The procedure for construct-

ng high-order conservative schemes with an appropriate number

f free parameters is outlined in Section 2 . First, the interior spatial

iscretization for central and compact finite differences of order 4,

, and 8, together with discrete conservation constraints are dis-

ussed. This is followed by the methodology of constructing con-

ervative boundary schemes. The section concludes with the prop-

rties of the non-optimized base schemes, in which all the free pa-

ameters are set to zero. The purpose of examining this problem is

o note that all non-optimized base schemes of order greater than

 are unstable for the test problem, highlighting the need for some

ind of optimization strategy that yields suitably stable schemes.

he optimization strategy for the free parameters is discussed in

ection 3 . A variety of tests which demonstrate the stability of the

ptimized schemes for both linear and non-linear problems are

resented in Section 4 and Section 5 contains the conclusions. The

oefficients for the optimized boundary schemes are given in the

ppendix. 

. Numerics 

The primary target of the stable, conservative and high-order

nite differences schemes developed here is high-fidelity, DNS-

ype, simulations of compressible flows. In general, the effects of

he molecular transport terms (viscous stress tensor, diffusion, and

hermal heat conduction) are dissipative in nature. As such, they

an easily mask instabilities in a numerical method for certain flow

egimes. To avoid this uncertainty and get a clearer picture of sta-

ility, the focus of the optimization procedure used here is on the

ompressible Euler equations for which conservation of mass, mo-

entum and energy are given by: 

∂ρ

∂t 
+ 

∂ρu i 

∂x i 
= 0 , (1) 

∂ρu i 

∂t 
+ 

∂ρu i u j 

∂x j 
= − ∂ p 

∂x i 
, (2) 

∂ρE 

∂t 
+ 

∂ρEu i 

∂x i 
= −∂ pu i 

∂x i 
, (3) 

here ρ is the density, p the pressure, E the total energy, u i the

 th component of the velocity vector, and the Einstein summation
onvention is assumed. The system is then closed by an equation

f state assuming a calorically perfect gas, 

p = (γ − 1) ( ρE − ρu i u i / 2 ) . (4) 

he speed of sound, a , is given by 

 = 

√ 

γ p/ρ . (5) 

or the numerical tests, the ratio of specific heats, γ , is assumed

qual to 1.4, corresponding to air. 

The focus of the present work is on continuous (smooth) solu-

ions to the governing equations. This is due to the goal of devel-

ping schemes suitable for DNS of compressible flows. The proper

pplication of DNS is Navier–Stokes-type equations, where the ex-

stence of smooth solutions is guaranteed for smooth enough ini-

ial conditions. Here, the Euler equations are only used as a strin-

ent, zero-dissipation test case, for times small enough so that sin-

ularities do not develop during the simulation. 

The procedure for generating high-order conservative dis-

retizations to this system is split into 4 subsections. The interior

patial discretization is discussed in Section 2.1 . The constraints

hich a discretization must satisfy to be discretely conservative as

ell as a general procedure for constructing high-order conserva-

ive boundary schemes are discussed in Sections 2.2 and 2.3 , re-

pectively. The stability of non-optimized base schemes, with the

ree parameters set to zero, is discussed in Section 2.4 for a test

roblem. 

.1. Interior spatial discretization 

In the interior of the domain, standard central and compact fi-

ite differences are used to approximate the spatial derivatives. For

hese schemes, a stencil of order 2(p + s ) and centered at point i

n a grid with constant spacing h , has the form, 

k = s ∑ 

 = −s 

δk f 
′ 
i + k = 

1 

h 

j= p ∑ 

j= −p 

γ j f i + j + O 

(
h 

2(p+ s ) ) , (6)

here γ− j = −γ j , δ−k = δk , γ0 = 0 , δ0 = 1 , and f are the known

unction values used to approximate the derivative, f ′ . The coef-

cients δk and γ j are derived in a straightforward manner by

atching the Taylor series coefficients for the left and right hand

ides of Eq. (6) . For further details of how this can be done

ystematically, the interested reader can see the discussions in

ef. [15,16] . Schemes with s = 0 correspond to explicit finite dif-

erences. These are shown in Table 1 for p ∈ {2, 3, 4}. Observe that

chemes with s > 0 require the solution of a linear system to eval-

ate the derivative and are typically labeled according to the struc-

ure of this system. Thus, stencils with s = 1 correspond to tridiag-

nal schemes [15] . Coefficients for the combination of ( s, p ) con-

idered in this paper are listed in Table 2 . 

.2. Discrete conservation constraints 

In the ensuing discussion the following notations are adopted:

a) bold capital letters, A , refer to matrices, (b) regular capital let-

ers, F , refer to column vectors, (c) lowercase letters, f , refer to con-

inuous functions, and (d) indexed lowercase letters, u i , refer to a

iscrete value 
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Table 2 

Coefficients for first derivative compact fi- 

nite differences approximation of order 

2(p + s ) given by Eq. (6) . 

( s, p ) δ1 γ 1 γ 2 γ 3 

(1, 1) 1 
4 

3 
4 

(1, 2) 1 
3 

7 
9 

1 
36 

(1, 3) 3 
8 

25 
32 

1 
20 

− 1 
480 
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For hyperbolic systems, it is often advantageous to use con-

servative approximations as these ensure the computed solution

maintains certain physical invariants. Conservation, in the Lax–

Wendroff sense [17] , ensures convergence to the correct discon-

tinuous weak solutions. However, the focus of the present paper

is on continuous solutions. Thus, we adopt a definition of conser-

vation prevalent in the DNS community. The basis of the current

approach can be found in Ref. [15] and is expanded upon below. 

To define a “conservative” approximation, consider a scalar hy-

perbolic conservation law with the form: 

∂u 

∂t 
+ 

∂ f 

∂x 
= 0 , (7)

for x ∈ [0, L ] where f = f (u ) is some flux function. The solution to

this equation has the property that the total change of u as a func-

tion of time is driven solely by the flux function, f , at the domain

boundaries. This can be seen by integrating Eq. (7) over the do-

main: 

d 

dt 

∫ L 

0 

u (x, t) dx = f | x =0 ,t= t − f | x = L,t= t . (8)

Therefore, a conservative approximation to Eq. (7) is one that

satisfies the discrete equivalent of Eq. (8) . This is a global defini-

tion of conservation that will be used to inform the construction

of our schemes. According to the argument of Ref. [18] , a globally

conservative method constructed from stencils with local support

must also be locally conservative for some definition of local fluxes.

To derive the discrete equivalent consider an approximation to the

first derivative operator given by: 

A F 
′ = B F , (9)

where A and B are coefficient matrices, F is the column vector

of discrete f given by [ f 0 , f 1 , . . . , f N ] 
T and F 

′ 
is the column vec-

tor of the unknown derivative of f given by [ f ′ 0 , f 
′ 
1 , . . . , f 

′ 
N ] 

T and

we have assumed a computational domain discretized with N + 1

points. For central (explicit) finite differences approximations, A is

the identity matrix. For the compact schemes considered here, A is

tridiagonal and must be invertible. If it is assumed that A does not

vary with time, the semi-discrete version of Eq. (7) becomes: 

d 

dt 
A U + B F = 0 , (10)

where U is a column vector of discrete u given by [ u 0 , u 1 , . . . , u N ] 
T .

With this, the integral in Eq. (8) can be written as the quadrature:

d 

dt 

i = N ∑ 

i =0 

w i [ A U] i = −
i = N ∑ 

i =0 

w i [ B F ] i , (11)

where the notation [ X Y ] i indicates the i th element of the column

vector resulting from the multiplication of the matrix X with the

column vector Y . The discrete conservation constraint can be seen

more easily with a change of notation. Let W be the column vector

of quadrature weights, W = [ w 0 , w 1 , . . . , w N ] 
T and let a column of

B be denoted by B i such that B = [ B 0 , B 1 , . . . , B N ] . Using this nota-

tion, Eq. (11) can be written as: 

d 
W 

T A U = −W 

T B F . (12)

dt 
t can be seen that the expression W 

T B is a row vector with el-

ments [ W 

T B 0 , W 

T B 1 , . . . , W 

T B N ] . Eq. (12) can then be written as:

d 

dt 
W 

T A U = −W 

T B 0 f 0 − W 

T B N f N −
i = N−1 ∑ 

i =1 

W 

T B i f i . (13)

omparing this with the continuous statement in Eq. (8) it is evi-

ent that discrete global conservation is satisfied if 

 = N−1 ∑ 

i =1 

W 

T B i f i = 0 . (14)

n order for this to be true for any f i , each term in the sum must

e zero: 

 

T B i = 0 , for all i ∈ [1 , N − 1] . (15)

he above condition leads to a system of N − 1 equations, which

ust be satisified for the scheme to be discretely conservative. Fur-

hermore, any temporal discretization that can be written as: 

 U 

n +1 = A U 

n − B �(F ) , (16)

here �( F ) is prescribed by the temporal discretization, will main-

ain the discrete conservation properties of the spatial discretiza-

ion since 

 

T A (U 

n +1 − U 

n ) = −W 

T B �(F ) (17)

= −W 

T B 0 �0 − W 

T B N �N . (18)

s an example, consider integrating U from time level n to level

 + 1 in Eq. (10) using the classic RK4 scheme with k = t n +1 − t n : 

 

1 ∗ = U 

n (19)

 

2 ∗ = U 

n − k 

2 

D F 1 ∗ (20)

 

3 ∗ = U 

n − k 

2 

D F 2 ∗ (21)

 

4 ∗ = U 

n − k D F 3 ∗ (22)

 

n +1 = U 

n − D 

k 

6 

(
F 1 ∗ + 2 F 2 ∗ + 2 F 3 ∗ + F 4 ∗

)
. (23)

here D = A 

−1 B and F i ∗ = F (U 

i ∗) . It can be seen that Eq. (23) re-

uces to Eq. (16) with � = 

k 
6 

(
F 1 ∗ + 2 F 2 ∗ + 2 F 3 ∗ + F 4 ∗

)
and thus

aintains discrete conservation of U in time. 

While the discrete conservation constraints given by

q. (15) give considerable flexibility in determining quadra-

ure weights and stencil coefficients, it is a non-trivial exercise to

esign schemes which satisfy these constraints. Indeed, none of

he existent methods against which we compare our results in

ection 4 satisfy these constraints. 

.3. Construction of conservative schemes 

In the interior of the domain, where the centered finite differ-

nce approximations given in Tables 1 and 2 are applied using a

iscretization with N + 1 points, the entries of B i are 

 i = [ Z 

i −p 
, γp , . . . , γ1 , 0 , −γ1 , . . . , −γp , Z 

N−i −p ] T , (24)

here Z 

j is a row vector of zeros of length j . From this, it is evi-

ent that weights of unity are sufficient to enforce conservation on

he interior scheme. 
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However, the interior schemes cannot be used at the first (or

ast) p points since they would extend beyond the boundaries of

he computational domain. Instead, a set of r modified boundary

tencils (where r ≥ p ) of order q are used to close the discrete sys-

em. In general, the accuracy of the full discrete system with in-

erior and boundary schemes will be min (2(p + s ) , q + 1) [9] . As

uch, only boundary stencils which do not diminish the interior

ccuracy (i.e. with q = 2(p + s ) − 1 ) are considered in this paper. 

A stencil of order q and width t approximating the first deriva-

ive operator at point i , near the left boundary (i.e. i < r ), can be

ritten as: 

k = s ∑ 

 = −s 1 

βik f 
′ 
i + k = 

1 

h 

j= t−1 ∑ 

j=0 

αi j f j + O ( h 

q ) , (25)

here s 1 = min (i, s ) , βi 0 = 1 and t > q − s 1 − s . The same β ik and

ij can be used to write the modified stencils on the right bound-

ry as: 

k = s 1 ∑ 

 = −s 

βi, −k f 
′ 
N−i + k = −1 

h 

j= t−1 ∑ 

j=0 

αi j f N− j + O ( h 

q ) , (26)

here i = 0 corresponds to the right boundary point. Thus, the

oundary stencils form r × t sub-matrices in the corners of the oth-

rwise skew-symmetric B . For schemes with s > 0, the structure of

 is preserved while symmetry is not. 

To write B i for the boundary stencils, we note that the first inte-

ior stencil will occur at point r and will span the points [ r − p, r +
p] . This allows for splitting B i into 2 different cases. To simplify the

escription, let 	 = [ γp , γp−1 , . . . , 0 , . . . , −γp−1 , −γp ] and let 	n de-

ote the last n elements of 	. With this notation, B i can be written

s, 

 i = 

{
[ α0 i , α1 i , . . . , αr−1 ,i , Z 

N+1 −r ] T , for i < r − p 

[ α0 i , α1 i , . . . , αr−1 ,i , 	
i +1 −r+ p , Z N−i −p ] 

T 
, for r − p ≤ i < t 

(27) 

n writing the columns of B in this way, it is assumed that t ≤
 + p + 1 (i.e. the extent of the boundary stencils does not go be-

ond that of the first interior stencil). Other systems are certainly

ossible but are not considered here. Enforcing the global conser-

ation constraints on the left boundary stencils can then be written

s: 

 w 0 , w 1 , . . . , w r−1 , 1 , 1 , . . . ] B i = 0 , for 0 < i < t , (28)

he construction of the boundary stencils given by Eqs. (25) and

26) allows an identical system to be written for the right bound-

ry. 

At this point, it is worth highlighting the free and fixed param-

ters in Eq (28) . First, an interior scheme is chosen which fixes s

nd p and consequently q . These choices impose lower bounds on

 and t but no upper bounds. Instead, r and t must be chosen in

uch a way that the system described by Eq. (28) has a solution. It

s rather easy to choose r and t such that the system is either over

etermined or under determined. Therefore a procedure has been

eveloped which consistently yields well posed systems. 

First, the relation between t and r is fixed with t = r + p.

ith this constraint, the first interior fluid column of B given

y Eq. (24) is B t . We note that there are r + p − 1 equations in

q. (28) and the quadrature weights only supply r unknowns. As

he second constraint in this procedure, we require that the other

p − 1 unknowns come from the last boundary stencil. Thus, it is

equired that the coefficients { αr −1 ,r +1 , . . . , αr −1 ,r + p−1 } are free pa-

ameters. An equivalent way of stating this is that the coefficients

 αr−1 , 0 , . . . , αr−1 ,r } are sufficient to satisfy the constraints imposed

y the chosen order of accuracy. The third constraint (which only

mpacts one of the stencils presented here), is that there be at least
ne free parameter in the first boundary stencil for the purpose of

ptimization which will be discussed in Section 3 . 

With these constraints, it is possible to systematically construct

onservative boundary schemes with different orders. The sim-

lest case is for explicit finite differences (i.e. s = 0 ). The bound-

ry schemes require 2 p points to meet the order of accuracy re-

uirements. Based on the constraints above, boundary schemes

ith r = 2 p − 1 are constructed. After enforcing conservation, there

re 2(p − 1) 2 free parameters in each system. These free parame-

ers play a critical role in the optimization strategy presented in

ection 3 . The coefficients are given as functions of the free pa-

ameters in easily parsed ascii text files in the accompanying Data

n Brief paper, for p = 2 , 3 , 4 . 

For tridiagonal compact schemes, the diagonal elements

1 , 1 , . . . , αr −1 ,r −1 are set to zero. The diagonal elements were set

o zero because the optimization procedure failed to find stable

 th order schemes when this constraint was not enforced. It is not

lear if this failure is a result of the optimization strategy employed

r a more fundamental limitation. The boundary schemes require

(s + p) points to meet the accuracy requirements. Including the

onstraint of the zero diagonal elements, and taking into account

he s + s 1 coefficients each stencil has on the left hand side of

q. (6) , each stencil requires 2 p + 1 coefficients on the right hand

ide of Eq. (6) . The minimum r which will yield the appropriate

umber of free parameters in the last row is r = 2 p. The minimum

 required to have at least one free parameter in the first stencil is

 = p + 2 . The largest of these is chosen for the 3 rd , 5 th and 7 th

rder conservative compact boundary schemes whose coefficients

re given as functions of the free parameters in easily parsed ascii

ext files in the accompanying Data in Brief paper. 

.4. Stability of the non-optimized base high order conservative 

chemes 

The simplest choice for the free parameters in the conservative

chemes discussed in the previous section, and given in the accom-

anying Data in Brief paper, is zero. The purpose of examining this

roblem here is to note that all non-optimized base schemes of

rder greater than 4 are unstable, highlighting the need for some

ind of optimization strategy that yields suitably stable schemes.

o assess the stability of the schemes with all the free parameters

et to zero, the Euler equations are integrated in time using the

K4 method, starting with an initially quiescent fluid with a Gaus-

ian density distribution: 

(x, 0) = 1 + 

exp (− (x −μ) 2 

2 σ ) √ 

2 πσ
, (29) 

(x, 0) = 

ργ −1 

γ − 1 

, (30) 

here the energy has been initialized using isentropic relations.

he only physical boundary condition for this inviscid flow is that

he normal component of the velocity be zero at the walls [19] . In

he one-dimensional case this becomes: 

 (0 , t) = u (L, t) = 0 , (31)

here the domain is given by x ∈ [0, L ]. A uniform mesh with con-

tant spacing h , is used to discretize the domain with N + 1 points.

he left and right computational boundaries are located at points

 and N , respectively. The boundary conditions for this problem

ead to the conservation of the total mass and energy within the

omain: 

d 

dt 

∫ 
ρ dx = 0 , 

d 

dt 

∫ 
ρE dx = 0 . (32)
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Fig. 1. Momentum (left) and Energy (right) at times 0, 3.2, 7.3, and 10.5 corresponding to the dotted, dashed, dash-dot and solid lines respectively. Simulation parameters 

are N = 120 and C = 0 . 1 . 
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The use of conservative schemes ensures that these relations are

satisfied discretely (to within machine precision) at finite resolu-

tions. This is verified using the quadrature weights, w i , presented

with each scheme. Conversely, a non-conservative scheme is one

which does not discretely satisfy these relations at finite resolu-

tions. The timestep restriction is given by the well-known CFL con-

straint, 

�t = 

C�x 

max (| u | + a ) 
, (33)

where typically C ≤ 1. Since the equations are non-linear and there

is no dissipation, infinitely thin shocks will develop. The sim-

ulations are stopped before this happens when there are still

about 15 points resolving the wavefront on the coarsest grid.

Simulations are performed at three different resolutions, N =
120 , 150 , and 200 , each at different time steps with two choices

for CFL constraint, C = 0 . 8 , 0 . 1 . The two choices for C are consid-

ered to ensure that there are no fast or slow spurious waves con-

taminating the solution, which could be damped by the dissipa-

tion associated with the time integration scheme. The simulations

are run with the parameters L = 5 , μ = 5 , and σ = 2 until a final

time of t f = 10 . 5 . The only schemes which run to completion are

the 4 th order explicit and compact schemes given in the accompa-

nying Data in Brief. Snapshots of the solution at times of interest

are shown in Fig. 1 for N = 120 and C = 0 . 1 . 

This particular test case was chosen due to the development

of strong gradients at the boundary as the density waves are re-

flected. This particular test case is discussed in more detail in the

next section. Again, since all non-optimized base schemes of order

greater than 4 are unstable, this highlights the need for some kind

of optimization strategy that yields suitably stable schemes. 

3. Optimization for numerical stability 

The idea of designing schemes with free paramters that can

be chosen to enhance stability is not new. In Ref. [1] , the stable

6 th order scheme (the highest order devised) was found by leav-

ing 4 free parameters in the non-conservative boundary stencils

which were chosen by an eigenvalue search code. To achieve sta-

ble, high-order schemes, Ref. [11] decreased the grid spacing near

the boundaries to minimize the spectral radius. The schemes de-

veloped were not conservative. 

Here, a different optimization strategy is employed. Rather than

attempting to optimize the schemes based on criteria which repre-

sent sufficient conditions for stability only for the linear case, the

optimization is performed directly on a non-linear system of inter-

est, the compressible Euler equations given in Eqs (1) –(3) . Specifi-

cally, the one-dimensional version of these equations will be used

for determining the free parameters. 
The optimization procedure requires an objective function, θ , to

aximize. For this procedure to be successful, the value of θ must

e a reasonable quantification of numerical stability. For this pro-

edure to be efficient, θ must be relatively inexpensive to compute.

Before formally defining θ , we offer a few observations on what

tability means for a given non-linear system. Perhaps the most

bvious observation is that a stable numerical scheme will run to

ome completion time, t c , while an unstable numerical solution

rocedure will terminate before t c (assuming both meet sufficient

esolution requirements). The second observation is that the stable

olution procedure will yield smooth solutions while an unstable

ethod will generate numerical oscillations. 

With these observations in mind, the objective function is split

nto two helper functions. The first of these, T ( S , α, N , C , I, t c ) → t r ,

uantifies the run time, t r , of a set of simulations of the Eu-

er equations with a particular boundary and interior scheme de-

cribed by S = (s, p, r, t) and a particular set of free parameters α
or a set of grid resolutions, CFL numbers, and initial conditions

iven by N , C and I , respectively. The computation of t r is described

n Algorithm 1 . Using this algorithm, it is clear that t r ∈ (0, t c ]. 

Algorithm 1: T ( S , α, N , C , I, t c ) → t r . 

input : Boundary and interior scheme parameters, S 

input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N 

input : Set of CFL constraints for temporal discretization, C 

input : Initial conditions, I 

input : Completion time, t c 
output : Average run time: t r 

Set coefficients for derivative operator using S and α; 

t r ← 0 ; 

foreach grid resolution N of N do 

Initialize simulation with N grid points and initial 

conditions I; 

foreach CFL number C of C do 

Integrate Euler equations in time using time 

constraint, C, until a time of t d where t d = t c if the 

simulation completed successfully or t d < t c if the 

simulation diverged at t d ; 

t r ← t r + t d ; 

end 

end 

t r ← t r / (| N || C | ) ; 

The second helper function, E ( S , α, N , C , I, t c , R ) → ε, quantifies

he solution smoothness for the time and space interval specified

y R . To be able to identify numerical oscillations in the solution,
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Algorithm 3: θ ( S , α, N , C , I, t c , R ) → ν . 

input : Boundary and interior scheme parameters, S 

input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N 

input : Set of CFL constraints for temporal discretization, C 

input : Initial conditions, I 

input : Completion time, t c 
input : Space-time interval for smoothness calculations, 

R = (t s , t e , m ) 

output : Quantification of stability: ν

ν ← T ( S , α, N , C , I, t c ) ; 

ε ← E ( S , α, N , C , I, t c , R ) ; 

if ε 
 = SENTINEL then ν ← ν + log (1 /ε) ; 

Table 3 

Enumeration of search space for a given stencil de- 

fined by S . 

S = (s, p, r, t) α

(0, 2, 3, 5) α04 , α14 

(0, 3, 5, 8) α06 , α16 , α26 , α36 , α37 

(0, 4, 7, 11) α08 , α18 , α28 , α38 , α48 , α58 , α59 

(1, 1, 3, 4) α03 , α13 

(1, 2, 4, 6) α05 , α15 , α25 

(1, 3, 6, 9) α07 , α17 , α27 , α37 , α47 , α48 

p

N

C

I

t

R

T  

s  

E  

t  

r  

c  

v  

h

 

n  

f  

w  

t  

g  

o  

r

 

w  

a  

p  

c  

o  

n  

e  
e make use of the monotonic nature of the energy per unit vol-

me, ρE , near the walls at a late time ( t ∈ [9.5, 10.5]) when the

nitial density, ρ I and energy, E I , are given by Eqs. (29) and (30) ,

espectively, with σ = 2 and μ = L = 5 . The monoticity of the en-

rgy at the final time of t = 10 . 5 can be seen in Fig 1 . Thus, for a

rid with N + 1 points, the monotonicity error on the left and right

oundaries is defined as: 

 

m 

L ( f ) = | T V 

m 

0 ( f ) − ( f m +1 − f 0 ) | (34) 

 

m 

R ( f ) = 

∣∣T V 

N 
N−m 

( f ) − ( f N−m 

− f N+1 ) 
∣∣ . (35) 

here total variation is given by: 

 V 

k 
j ( f ) = 

i = k ∑ 

i = j 
| f i +1 − f i | , (36)

nd f i is the computed solution at point i . Note that M 

m 

L 
has been

efined for a monotonically increasing function and M 

m 

R 
has been

efined for a monotonically decreasing function to reflect the dif-

erent behavior of ρE near the left and right boundaries, respec-

ively. With these definitions, the procedure for computing ε is

given in Algorithm 2 . Typically, ε ∈ [10 −7 , 10 −5 ] for successfully

Algorithm 2: E ( S , α, N , C , I, t c , R ) → ε. 

input : Boundary and interior scheme parameters, S 

input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N 

input : Set of CFL constraints for temporal discretization, C 

input : Initial conditions, I 

input : Completion time, t c 
input : Space-time interval for smoothness calculations, 

R = (t s , t e , m ) 

output : Maximum monotonicity error: ε

Set coefficients for derivative operator using S and α; 

ε ← 0 ; 

foreach grid resolution N of N do 

Initialize simulation with N grid points and initial 

conditions I; 

foreach CFL number C of C do 

Integrate Euler equations in time using time 

constraint, C, until a time of t d where t d = t c if the 

simulation completed successfully or t d < t c if the 

simulation diverged at t d ; 

if t d < t c then 

ε ← SENTINEL ; 

return ; 

end 

εL ← temporal average of M 

m 

L 
(ρE) over time interval 

t ∈ [ t s , t e ] ; 

εR ← temporal average of M 

m 

R 
(ρE) over time interval 

t ∈ [ t s , t e ] ; 

ε ← max (ε, εL + εR ) ; 

end 

end 

ptimized stencils. 

The objective function θ ( S , α, N , C , I, t c , R ) → ν (where ν is a

easure of the error ε) can then be defined in terms of T and

and is given in Algorithm 3 . With this, the optimization problem

s stated as: For a given stencil, S , set of grid resolutions, N , set

f temporal resolutions C , initial conditions, I , completion time, t c 
nd interval for smoothness calculations, R , choose α such that θ
s maximized. The parameters used for optimization in the present
aper are: 

 = { 120 , 150 , 200 } (37) 

 = { 0 . 8 , 0 . 1 } (38) 

 = (ρI , E I , σ = 2 , μ = 5 , L = 5) (39) 

 c = 10 . 5 (40) 

 = (t s = 9 . 5 , t e = t c , m = 10) (41) 

he equations are integrated in time using the RK4 method. The

topping time of t c = 10 . 5 was chosen such that the solution to the

uler equations remained continuous. If one was interested in op-

imizing boundary schemes for shock capturing methods, the inte-

ior schemes need to be changed appropriately and the simulation

ould be allowed to run further to where it would naturally de-

elop discontinuities. Thus, the optimization procedure presented

ere could also be applied to shock capturing schemes. 

In general, the cost of the optimization procedure grows expo-

entially with | α| . Therefore, to limit the cost, only a subset of the

ree parameters were included in the search space while the rest

ere set to zero. Table 3 shows the non-zero free parameters used

o define the search space α for each of the schemes considered. A

radient ascent method was used with these search spaces to find

ptimized schemes. To start the searches, α was initialized with

andom numbers in the range [ −1 , 1] . 

The outcome of this process is a set of stencils which perform

ell on the 1D Euler test. This set is then subjected to the linear

nd non-linear tests presented in the next section. Schemes which

erform well on all tests are collected into the databases in the ac-

ompanying Data in Brief paper. The number of boundary schemes

f each type are given in Table 4 . The schemes analyzed in the

ext section are simply the first entries in the databases. The co-

fficients for the schemes examined in the next section are shown
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Table 4 

Number of optimized sets of boundary coefficients found for 

each scheme. 

Scheme family E 4 E 6 E 8 T 4 T 6 T 8 

Number found 101 16 3 1079 16 25 
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in Tables 5 and A .6 –A .10 . The schemes E 4, E 6 and E 8 are explicit

schemes with boundary/interior orders of 3/4, 5/6, and 7/8, respec-

tively. The expected order of accuracy for these stencils is 4, 6, and

8, respectively. The schemes T 4, T 6, and T 8 are compact schemes

with a tridiagonal structure with boundary/interior orders of 3/4,

5/6, and 7/8, respectively. The expected order of accuracy for these

stencils is 4, 6, and 8 respectively. As an example, T 8 is given in

Table 5 rather than the Appendix. 

We do not claim that the objective function described above or

the particular choice of parameters for the simulation of the Euler

equations is optimal. Indeed, it is difficult even to define what op-

timal means since the procedure yields a variety of stable schemes

which behave differently for different tests. The question of how

best to search for a stable scheme with a particular set of proper-

ties is very interesting but is beyond the scope of the present work.

Nevertheless, the schemes presented here pass the numerical tests

usually considered in the literature, including more stringent ver-

sions of these tests, which, as far as we know, no existent high

order, conservative boundary schemes pass without requiring ar-

tificial dissipation, filtering, weak boundary condition enforcement

or a significant reduction of the order at the boundaries. 

4. Results 

In this section, the optimized conservative schemes are sub-

jected to a variety of tests to demonstrate stability (both Lax and

asymptotic) for a variety of cases which are representative of the

challenges encountered by high fidelity, DNS-like simulations. It

was found that the optimized schemes perform well for the full

Navier-Stokes equations. Due to the stabilizing impact of viscos-

ity, these tests were left out in favor of purely hyperbolic prob-

lems to highlight the robustness of the optimized conservative

schemes. It should also be noted that only problems with impen-

etrable walls, or supersonic inflow/outflow are simulated. We have

not addressed the issues encountered with subsonic inflow/outflow

which necessitate the use of artificial boundary conditions [2] . This
Table 5 

Scheme T 8: optimized boundary coefficients for conser

imation with 8 th order tridiagonal interior scheme. 

w 0 = 0 . 5623384360774939 w 1 = −0 . 01354322

β0 , 1 = 3 . 210113927329531 β1 , −1 = 2 . 21110473

α00 = −3 . 0514 4 4846761362 β1 , 1 = 42 . 08319933

α01 = 2 . 345334805372179 α10 = −4 . 87395490

α02 = −0 . 8696582180114061 α12 = −53 . 1817724

α03 = 3 . 641381848342838 α13 = 93 . 43488742

α04 = −3 . 399810121117448 α14 = −52 . 7498325

α05 = 1 . 792414554502852 α15 = 22 . 56437298

α06 = −0 . 5246438812007604 α16 = −5 . 88655546

α07 = 0 . 0664258588731064 α17 = 0 . 692854955

w 3 = −0 . 6567072566895262 w 4 = −0 . 04274750

β3 , −1 = −1 . 329341564172446 β4 , −1 = −1 . 213703

β3 , 1 = −2 . 465569273620743 β4 , 1 = 1 . 660769542

α30 = −0 . 05878600824425402 α40 = 0 . 056194417

α31 = 0 . 7074851396321982 α41 = −0 . 47611421

α32 = −0 . 2983532234844736 α42 = 1 . 967293657

α34 = 1 . 491392318405186 α43 = −2 . 29792186

α35 = −2 . 222455418896595 α45 = −0 . 72027515

α36 = 0 . 4240020577097782 α46 = 1 . 865337479

α37 = −0 . 0432848651218399 α47 = −0 . 44782364

α48 = 0 . 053309329
as done to focus on the stability of the numerical scheme rather

han the efficacy of a particular boundary treatment. The opti-

ized schemes can certainly be applied to subsonic inflow/outflow

roblems but that is beyond the scope of the present work. 

The first test is presented in Section 4.1 where the eigenval-

es of the discretization matrices constructed from the optimized

chemes are analyzed for asymptotic stability. In Section 4.2 , the

ime stability of the schemes is demonstrated by solving a neu-

rally stable hyperbolic system for long times. In Section 4.3 , the

ime stability of the schemes is demonstrated by solving the two-

imensional scalar wave equation with varying coefficients for long

imes. The long-time behavior of the schemes in the presence of

ignificant point-to-point variations in error is assessed with an in-

iscid vortex problem in Section 4.4 . The final test in Section 4.5 is

 two-dimensional extension of the test used for optimization and

emonstrates the smoothness of the solution even as the scales of

he solution change drastically with time. 

In addition to testing each the optimized conservative schemes

eveloped in the previous section, three other existing schemes

re tested for comparison. The first scheme is an explicit 5 th or-

er boundary scheme developed by Carpenter et al. [1] , which was

ound via an eigenvalue search process. This scheme will be re-

erred to as S 1 and the coefficients are given in Table B.11 . The in-

erior uses the 6 th order compact scheme in Table 2 with (s, p) =
(1 , 2) 

The second scheme, S 2, is a 5 th order compact scheme due to

ook and Riley [12] and given in Table B.12 . This scheme is coupled

ith the 6 th order compact scheme in Table 2 with (s, p) = (1 , 2) .

The third scheme, S 3, given in Table B.13 was developed by

urner et al. [14] and has been optimized in Fourier space for spec-

ral accuracy. The boundary scheme is coupled with the optimized

 th order interior scheme of Kim [20] which is given Table B.14 . 

The schemes S 2 and S 3 are used with a high order filter for sta-

ility purposes by their respective authors. No filtering is used in

he present work, in order to make a fair comparison between the

chemes and test their properties without stabilizing source terms.

For schemes, S 1–S 3, the discrete conservation constraints given

y Eq. (12) cannot be discretely satisfied for the given coeffi-

ients for any set of quadrature weights, w i . For example, applying

he conservation constraints to scheme S 2 results in the following

verdetermined system for the left boundary quadrature weights: 

7 w 2 + 3 w 1 + 21 w 0 − 7 = 0 , 

96 w 2 − 18 w 1 − 168 w 0 − 203 = 0 , 
vative 7 th order compact first derivative approx- 

834668401 w 2 = 0 . 4905160476934302 

043239 β2 , −1 = 1 . 557633196122124 

908019 β2 , 1 = 6 . 482610425055064 

0119216 α20 = −0 . 2604486511132088 

8515291 α21 = −1 . 943640425204907 

01782 α23 = −3 . 84 806 892990241 

0718357 α24 = 8 . 245332418591937 

084277 α25 = −2 . 779674691274779 

3761137 α26 = 0 . 6603673342280958 

195867 α27 = −0 . 0738670553247296 

710778264 w 5 = 1 . 590322461525674 

810247279 β5 , −1 = −0 . 1776191023391513 

489766 β5 , 1 = 0 . 2232924886469337 

51764617 α50 = −0 . 0 0535309375150 0729 

98435586 α51 = 0 . 04953262252336028 

743868 α52 = −0 . 2157074945553577 

6880887 α53 = 0 . 6319138819385537 

34930111 α54 = −1 . 144234713147819 

238859 α56 = 0 . 6783115550998231 

3536206 α57 = 0 . 005414306071706973 

2532889 α58 = 1 . 229358212328832 e − 4 
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Fig. 2. Real and Imaginary parts of eigenvalues of discretization matrix for all optimized conservative schemes as indicated. The results of several different grid resolutions 

are shown. The real parts of all eigenvalues are negative. 
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216 w 1 + 756 w 0 − 203 = 0 , 

196 w 2 + 30 w 1 − 168 w 0 + 7 = 0 , 

hich does not admit solutions. The same holds true for schemes

 1 and S 3. 

.1. Asymptotic stability: eigenvalue analysis 

In ref. [1] , the importance of asymptotic stability for long time

imulations was noted. An asymptotically stable scheme is one for

hich the error does not grow unphysically with time. To illustrate,

onsider the linear hyperbolic equation: 

∂u 

∂t 
+ 

∂u 

∂x 
= 0 , for 0 ≤ x ≤ 1 , and t ≥ 0 , (42)

ith consistent initial and boundary conditions for u = u (x, t) 

 (x, 0) = f (x ) u (0 , t) = g(t) . (43)

ssuming a spatial discretization of N + 1 points, the first deriva-

ive operator can be approximated as: 

 U 

′ = B U , (44) 

here A and B are of dimension (N + 1) × (N + 1) and U, U 

′ are

olumn vectors of length N + 1 . The fully discrete solution pro-

edure involves solving Eq. (44) over the whole domain and up-

ating U accordingly, except at the boundary where u (0 , t) = g(t)

s imposed. Let D = −A 

−1 B , and let the N × N submatrix of D

hich does not include the first row or column of D , be de-

oted by Q . With this notation, the semi-discrete system for ˆ U =
 u 1 , u 2 , . . . , u N ] 

T can be written as: 

d ̂  U 

dt 
= Q ̂

 U + G , (45) 

here G is a column vector of length N giving the appropriate

eights of the stencils on the boundary point, u 0 . The stability of

his semi-discrete system is governed by the eigenvalues, λ, of the

patial discretization matrix, Q . Let the real and imaginary parts of
n eigenvalue be given by Re( λ) and Im( λ), respectively. The semi-

iscrete system is then stable if [21] 

e (λ) ≤ 0 for all λ . (46) 

The discretization matrix Q can be constructed for any scheme

y consulting Tables A.6 –5 . Fig. 2 shows the real and imaginary

arts of the eigenvalues of Q for schemes E 4, E 6, E 8, T 4, T 6, and

 8 for N + 1 = 31 , 61 , 91 . The real parts of all eigenvalues are neg-

tive, satisfying the stability constraint given by Eq (46) . In all

chemes, no eigenvalues with positive real parts are found, indicat-

ng asymptotic stability [1] . The same holds true for every scheme

n the accompanying Data in Brief paper. 

.2. Time stability: constant coefficient hyperbolic system 

In this section, the accuracy and time stability of the schemes

s demonstrated by solving the neutrally stable hyperbolic system

escribing a standing wave: 

∂u 

∂t 
= 

∂v 
∂x 

, 
∂v 
∂t 

= 

∂u 

∂x 
, x ∈ [0 , 1] , (47)

ith boundary conditions: 

 (0 , t) = 0 , v (1 , t) = 0 . (48)

he initial conditions chosen for this test case are: 

 (x, 0) = −3 π

2 

sin 

3 πx 

2 

, v (x, 0) = 0 , (49)

hich yield the exact solution: 

 (x, t) = −3 π

4 

[
sin 

3 π(x − t) 

2 

+ sin 

3 π(x + t) 

2 

]
, (50) 

 (x, t) = 

3 π

4 

[
sin 

3 π(x − t) 

2 

− sin 

3 π(x + t) 

2 

]
(51) 
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Fig. 3. L ∞ norm of error in u over 0 ≤ t ≤ 500, for N ∈ {21, 41, 61, 81, 101} corresponding to the colors blue, orange, green, red, and purple, respectively, and CF L = 0 . 5 , for the 

hyperbolic system in Section 4.2 . The optimized schemes developed in this paper behave well at all grids. The comparison schemes, S 1, S 2, and S 3 are unstable on multiple 

grids. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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For this test, domain sizes of N = 21 , 41 , 61 , 81 , 101 are used with

two different time step constraints: constant CFL and constant time

step, �t . The constant CFL tests are run with CFL = �t/ �x = 0 . 5 to

demonstrate that the schemes yield appropriate results for reason-

able timesteps. A timestep of �t = 0 . 001 was used for the constant

timestep case corresponding to a CFL = 0 . 1 on the finest grid. The

tests are run until t = 500 . This run-time is comparable to others

reported in the literature [22] . Note that in these previous works,

no schemes with direct boundary condition enforcement were able

to pass this stringent numerical test. Rather, for small CFLs, the so-

lutions would diverge very quickly (i.e t < 5). Integration in time is

done using the standard RK4 method. 

Fig. 3 shows the L ∞ 

norm of the error in u as a function of time

for the constant CFL case for the indicated scheme. The optimized

schemes, E 4, E 6, E 8, T 4, T 6, and T 8 all behave in a stable manner

on all grid resolutions indicating time stability for this stringent

numerical test. The comparison schemes S 1, S 2, and S 3 all diverge

from the true solution very rapidly on multiple grids. It is interest-

ing to note that S 1 does exhibit stable behavior on one grid and a

particular choice of CFL. This highlights the need to perform such

numerical tests on a broad spectrum of temporal and spatial reso-

lutions. 
Holding the timestep constant at a small value allows for deter-

ining the order of accuracy of the spatial schemes. To this end,

he maximum error in u recorded over the course of the simula-

ion is reported as L ∞ 

( u ) in Fig. 4 for the different schemes as a

unction of N . Lines indicating the expected order of the schemes

re drawn on each plot. The optimized schemes all behave in a sta-

le manner and yield the expected order of convergence. Due to

he long time integration, the error bottoms out around 10 −8 . This

ehavior is only visible for the T 6 and T 8 schemes due to their very

ow discretization errors. Error norms for all schemes at different

FLs and constant �t are recorded in the accompanying database. 

.3. Time stability: two-dimensional varying coefficient scalar wave 

quation 

In this section, the accuracy and long-time stability of the

chemes is demonstrated by solving the two-dimensional, varying

oefficient, scalar wave equation: 

∂u 

∂t 
+ c x 

∂u 

∂x 
+ c y 

∂u 

∂y 
= 0 , 0 ≤ (x, y ) ≤ L, t ≥ 0 , (52)
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Fig. 4. Maximum error in u over 0 ≤ t ≤ 500, L ∞ ( u ), plotted against grid size, N , for �t = 0 . 001 and indicated schemes. The expected order of each scheme is drawn as a 

solid black line. The error bottoms out around 10 −8 . 

Fig. 5. L ∞ norm of error over 0 ≤ t ≤ 10 0 0, for indicated N and constant timestep of �t = 0 . 001 for the varying coefficient scalar wave equation test in Section 4.3 . The 

optimized schemes developed in this paper as well as S 1 exhibit time stability. 

w

c

a

u

u

here, 

 x = 

∂ψ 

∂x 
, c y = 

∂ψ 

∂y 
, ψ(x, y ) = 

√ 

(x + 0 . 25) 2 + (y + 0 . 25) 2 , 

(53) 
nd initial and boundary conditions for u = u (x, y, t) , 

 (x, y, 0) = sin 2 πψ, (54) 

 (0 , y, t) = sin 2 π(ψ(0 , y ) − t) (55) 
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Fig. 6. Maximum error over 980 ≤ t ≤ 10 0 0, L ∞ , plotted against grid size, N , for �t = 0 . 001 and indicated schemes. The expected order of each scheme is drawn as a solid 

black line. 
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u (x, 0 , t) = sin 2 π(ψ(x, 0) − t) . (56)

The exact solution is a circular wave radiating outward from

(−0 . 25 , −0 . 25) , given by 

u (x, y, t) = sin 2 π(ψ − t) . (57)

We define the period, T , of the solution as the time it takes for

the wave to travel from the origin to ( L, L ). The domain length L is

chosen to be L = 

√ 

2 such that T = 2 . 

For this test, grid sizes of N = 21 , 31 , 41 , 61 , 81 in each direction

are again used with two different time step constraints: constant

CFL and constant time step, �t . The constant CFL tests are run with

CFL = �t/ �x = 0 . 8 to demonstrate that the schemes yield appro-

priate results for reasonable timesteps. A timestep of �t = 0 . 001

was used for the constant timestep case corresponding to a CFL of

roughly 0.06 on the finest grid. To demonstrate time stability, the

tests are run for a full 500 periods (until t = 1000 ). 

Fig. 5 shows the L ∞ 

norm of the error as a function of time

for the constant �t case for the indicated scheme. The error does

not grow in time but simply oscillates about a constant mean with

the same period as the exact solution after a brief transient for the

optimized conservative 4 th , 6 th and 8 th order schemes developed

in Section 3 . The S 1 comparison scheme is also stable for this long

running test but S 2 and S 3 are not. The results for the constant CFL

case are qualitatively similar and are available in the accompanying

Data in Brief paper. 

Holding the timestep constant at a small value allows for deter-

mining the order of accuracy of the spatial schemes. To this end,

the maximum error recorded over the final 10 periods is reported

as L ∞ 

in Fig. 6 for the different schemes and timestep constraints

as a function of N . A line indicating the expected order of each

scheme is drawn on the plots. The optimized 4 th , 6 th and 8 th or-

der schemes developed in this paper all exhibit the desired order

of accuracy. 

4.4. Nonlinear test: inviscid vortex/numerical reflection 

In this section the two-dimensional Euler equations are solved

in order to examine the transport of an inviscid vortex through

a domain and it’s numerical collision with a supersonic outflow

boundary. This collision with the outflow boundary generates very

high frequency errors which propagate back into the domain with

the potential to destabilize the simulation over long periods of

time. The transport of an inviscid vortex through a periodic do-

main has been studied to quantify the impact of dissipation in

upwinded schemes (e.g., Ref. [23] ). The supersonic inflow/outflow

case has been examined in Refs. [14,20] for relatively short times
1.5 flow through times based on the background streamwise ve-

ocity). In the present case, the simulations are run for 50 flow

hrough times with supersonic inflow/outflow in the streamwise

irection. Periodic boundary conditions are imposed in the cross-

tream direction. 

We adopt the notations from Ref. [14] to describe the analytic

olution for a vortex of nondimensional circulation, ε, propagat-

ng in the x direction. The solutions are repeated below for conve-

ience: 

ρ

ρ∞ 

= 

(
1 − (γ − 1) 

2 

ψ 

2 

)1 / (γ −1) 

, (58)

u 

a ∞ 

= M ∞ 

+ Kyψ, (59)

v 
a ∞ 

= −Kxψ, (60)

p 

p ∞ 

= 

(
ρ

ρ∞ 

)γ

, (61)

here ψ = 

ε
2 π exp ((1 − K 

2 (x 2 + y 2 )) / 2) , M ∞ 

is the free stream

ach number, and γ = c p /c v = 1 . 4 . As with the previous tests,

ime integration is carried out using a standard RK4 method. The

ests were run on a computational domain of x ∈ [0, 20], y ∈ [0, 10]

ith (x 0 , y 0 ) = (10 , 5) , K = 1 , ε = 1 . 5 and M ∞ 

= 2 . 0 

All schemes were tested on four different grid resolutions,

 x × N y = 51 × 26, 101 × 51, 201 × 101, and 401 × 201 with two dif-

erent timesteps, C = 0 . 8 , 0 . 1 until a time of t = 10 0 0 (50 flow

hrough times). 

To illustrate the numerical stability issues, early time results

ith T 8 are shown in Fig. 7 , which depicts contours of the pres-

ure at times t = 0 , 5 , and 10 for the different grid resolutions. Half

f the vortex has propagated through the outflow boundary by a

ime of t = 10 . Wireframe plots of the error in pressure, P ε , are

hown for the coarsest mesh in Fig. 8 at two slightly later times

f t = 11 and t = 23 . Large high-frequency errors appear at both

he inflow and outflow boundaries as the vortex exits the domain

round t = 11 . At the later time of t = 23 , the point-to-point os-

illations in P ε are more pronounced. However, all the optimized

onservative schemes developed in Section 3 are stable to these

inds of perturbations. The evolution of the infinity norm of the

ressure error, L ∞ 

( P ε ) over time using the T 8 scheme is shown in

ig. 9 . The peak of the error occurs around time t = 10 . After this,

he error exhibits complex behavior as high frequency error waves

ounce back and forth between the inflow and outflow boundaries

efore ultimately decaying. The magnitude of the peak error does
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Fig. 7. Pressure contours of the solution computed with the 8 th order T 8 scheme at times t = 0 , 5 , 10 as the vortex moves from left to right at the indicated resolutions. The 

pressure contours are drawn at the same values for all times and grids. The contours range from 0.12 at the outer edge of the vortex to 0.18 in the interior of the vortex. 

Fig. 8. Wireframe plot of pressure error, P ε , at indicated times for the solution computed with the 8 th order T 8 scheme at the coarsest resolution of 51 × 26 points. 

Fig. 9. Evolution of infinity norm of pressure error, L ∞ ( P ε ) for the inviscid vortex simulation for the indicated time constraints with the 8 th order T 8 scheme. The short, 

medium and long dashed lines correspond to grids with N x = 51 , 101 , and 201, respectively. The solid lines represents the finest grid with N x = 401 . The vertical dashed line 

at t = 10 is when the half the vortex has left the domain through the outflow. 
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s  

v  

8  

s  
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s  

t  

t  

c  

b  

o

4

 

v  

c

ρ

ot appear to be affected by the size of the timestep. Due to the

issipation inherent in the RK4 with a larger timestep, the error

ecreases more rapidly at larger times for C = 0 . 8 . 

Fig. 10 shows the evolution of L ∞ 

( P ε ) for the rest of the

chemes considered in the paper for C = 0 . 1 . The optimized con-

ervative schemes E 4, E 6, E 8, T 4, T 6 and T 8 all display stable, con-

erging behavior for this challenging test problem. Note that the

 th order schemes do not offer an advantage over the 6 th order

chemes in this case. This may be due to the fact that higher or-

er methods will damp fewer wave modes and therefore be more

usceptible to the high frequency errors that are generated by

his test. The schemes exhibit very similar behavior for the larger

imestep with both the peak and final errors recorded in the ac-
ompanying database. S 1 also performs well on this problem while

oth S 2 and S 3 diverge shortly after the vortex passes through the

utflow. 

.5. Nonlinear test: Gaussian pulse 

As the final test, we solve the Euler equations for a modified

ersion of the problem used in the optimization process. The initial

onditions are given by: 

(x, y, 0) = 1 + 

exp (− (x −L x ) 2 +(y −L y ) 2 

2 σ ) √ 

2 πσ
, (62) 
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Fig. 10. L ∞ norm of error in Pressure as a function of time, t . The short, medium and long dashed lines correspond to grids with N x = 51 , 101 , and 201, respectively. The 

solid lines represents the finest grid with N x = 401 . Results are for the case with constant CFL = 0 . 1 . The vertical dashed line at t = 10 is when the half the vortex has left 

the domain through the outflow. 
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u (x, y, 0) = 0 (63)

v (x, y, 0) = 0 (64)

E(x, y, 0) = 

ργ −1 

γ − 1 

, (65)

where the energy has been initialized using isentropic relations.

There are slip-walls on all 4 sides of the domain such that the

boundary conditions are, 

u (0 , y, t) = u (L x , y, t) = v (x, 0 , t) = v (x, L y , t) = 0 , (66)

where the domain is given by x ∈ [0, L x ], y ∈ [0, L y ]. The equations

are integrated in time using the RK4 method. A domain size of

L x = L y = 5 is chosen with σ = 2 . As in the one-dimensional case,

in the absence of viscosity, the solution will develop singularities.

The simulation is stopped before this occurs at a time of t = 27 .

Snapshots of the energy at t = 0 , 23 , and 27 are shown in Fig. 11

for the T 8 scheme. The solution starts off smooth and excessively

resolved but rapidly develops small scale structure that becomes
hallenging to resolve as the initial pulse reflects off the walls and

nteracts with itself. The rapidly changing scales of the solution

ake it difficult to remove the time dependence and demonstrate

n order of convergence consistent with the spatial scheme. There-

ore, we will simply examine the smoothness of the average ki-

etic energy, 〈 K 〉 , over time and demonstrate that the convergence

s moving in the right direction. 

The solution obtained with T 8 on a 1441 × 1441 grid with a

imestep of �t = 0 . 0 0 015 (corresponding to a CFL of approximately

.05) is used as the exact solution. The average kinetic energy for

his case is shown in Fig. 12 . To compare with the exact solution,

ll schemes are run with a constant �t = 0 . 0 0 015 at grid resolu-

ions N x × N y = 181 × 181, 241 × 241, and 361 × 361. The schemes

ielded quantitatively similar results at a CFL of 0.5. Fig. 13 shows

he error in average kinetic energy 〈 K 〉 ε for the 3 grid resolutions

or the T 8 scheme demonstrating stability and convergence. Virtu-

lly identical plots can be shown for E 4, E 6, E 8, T 4, T 6, and S 1. After

hort times, both S 2 and S 3 diverge. 

At this point it is worth noting that only the optimized schemes

eveloped in this paper pass all of the numerical stability tests.

he comparison scheme, S 1, which was designed with stability in

ind, fails the test in Section 4.2 . The comparison schemes, S 2 and
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Fig. 11. Wireframe plot of Energy ρE computed with the 8 th order T 8 scheme at times t = 0 , 23 . 1 , 27 (left to right) for the initial conditions in Eq. (62) . 

Fig. 12. Average kinetic energy normalize by maximum kinetic energy Ke m = 

0 . 002259 plotted against time for the 8 th order T 8 scheme on a 1441 × 1441 grid. 

Fig. 13. Error in average kinetic energy for the Gaussian pulse test Section 4.5 with 

grids given by Nx = 181 , 241 , and 361 corresponding to short, medium and long 

dashed lines, respectively. The solution is obtained using the T 8 scheme but vir- 

tually identical plots (not shown) are obtained with E 4, E 6, E 8, T 4, T 6, and S 1. 
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 3, are used here without any numerical filtering and fail all of the

tability tests. 

It is also worth noting that these tests do not constitute a rig-

rous stability proof for non-linear systems of partial differential

quations. The tests presented here are meant to be representa-

ive of the numerical challenges faced in performing direct nu-

erical simulations of the Navier–Stokes equations. The optimized
chemes may not be suitable for systems that exhibit very differ-

nt behavior. For example, the schemes will not be stable in the

resence of discontinuities. 

. Conclusions 

The primary challenge of using high-order finite differences for

igh-fidelity simulations of non-linear physics in non-periodic do-

ains lies in the construction of stable, conservative and high-

rder numerical boundary schemes. Existing high-order schemes,

tilizing direct boundary condition enforcement, either sacrifice

onservation, or require the order at the boundary to be signifi-

antly reduced, limiting their effectiveness for DNS. The schemes

resented in this paper are able to achieve high-order and sat-

sfy conservation without introducing artificial dissipation or fil-

ering. To this end, a thorough elucidation was given of the con-

traints which a discretely conservative scheme must satisfy, as

ell as a general procedure for constructing discretizations of any

rder which satisfy these constraints. It was shown that this pro-

ess results in numerical boundary schemes which have free co-

fficients that can be chosen without changing the order of accu-

acy of the scheme. A test of these conservative schemes with all

he free parameters set to 0 was performed using the compressible

uler equations. All schemes with greater than 4 th order accuracy

ere found to be unstable with this naive choice of free parame-

ers. To rectify this, a novel optimization approach was developed

nd applied directly to the Euler equations (as opposed to a sim-

lified linear model) to find the free parameters that would yield

table, conservative schemes of orders 4, 6, and 8. Since the focus

f the present work is on continuous solutions to the governing

quations, the Euler equations are only used as a stringent, zero-

issipation test case, for times small enough so that singularities

o not develop during the simulation. 

Parabolic terms (i.e. second order derivatives) were not investi-

ated here because the schemes available in the literature are al-

eady stable [15] and require no optimization. 

The stability and accuracy of the new conservative schemes

as verified in a number of ways and compared to three pop-

lar schemes existent in the literature. None of the comparison

chemes passed all of the stability tests in this work. First, an

igenvalue analysis of each scheme applied to the linear advection

quation was performed which showed that all new schemes were

symptotically stable. Following this, a long-time simulation of a

eutrally stable hyperbolic system was done, which demonstrated

hat each new scheme was stable and of the expected accuracy.

ong-time simulations of the two-dimensional varying coefficient

calar wave equation demonstrated the same results. All schemes
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were tested in simulating the compressible Euler equations in two

different configurations. In the first configuration, a long-time sim-

ulation of an isentropic vortex passing through an outflow bound-

ary highlighted the excellent stability and accuracy of the conser-

vative schemes. The second configuration involved the evolution

of a two dimensional Gaussian density pulse and highlighted the

stability of the new schemes in problems with rapidly changing

scales. 

To the best of our knowledge, the 6 th and 8 th order schemes

developed in this paper mark the first successful application of

conservative finite-differences of such high order to non-linear hy-

perbolic initial boundary value problems without requiring artifi-

cial dissipation or filtering, while allowing for direct boundary con-

dition enforcement. 
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ppendix A. Optimized conservative boundary schemes 

The databases in the accompanying Data in Brief paper contain

 number of optimized sets of boundary coefficients that can be

sed to simulate all the numerical tests in this paper in a stable

nd accurate manner. The first scheme in each database was ex-

mined in Section 4 . The coefficients of each scheme used here are

iven in Tables 5 and A .6 –A .10 . The schemes E 4, E 6 and E 8 are ex-

licit schemes with boundary/interior orders of 3/4, 5/6, and 7/8,

espectively. The schemes T 4, T 6, and T 8 are compact schemes with

 tridiagonal structure with boundary/interior orders of 3/4, 5/6,

nd 7/8, respectively. 
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Table A.8 

Scheme E 8: optimized boundary coefficients for conservative 7 th order first derivative approximation 

with 8 th order interior scheme. 

w 0 = 0 . 3042245370370371 w 1 = 1 . 460383597883598 w 2 = 0 . 453463955026455 

α00 = −3 . 241291470961598 α10 = 0 . 01177358173931513 α20 = 0 . 02137340875607741 

α01 = 12 . 18747462483564 α11 = −2 . 687045796771664 α21 = −0 . 31384 4 4129057621 

α02 = −28 . 65616118692474 α12 = 7 . 329660288700824 α22 = −0 . 8515445548298325 

α03 = 47 . 97898904051615 α13 = −11 . 15932057740165 α23 = 1 . 803089109659665 

α04 = −54 . 14040296731185 α14 = 12 . 49081738841873 α24 = −1 . 003861387074581 

α05 = 40 . 51232237384 94 8 α15 = −9 . 409320577401648 α25 = 0 . 4697557763263318 

α06 = −19 . 32282785359141 α16 = 4 . 529660288700824 α26 = −0 . 1515445548298325 

α07 = 5 . 330331767692783 α17 = −1 . 260855320581188 α27 = 0 . 02901272995138073 

α08 = −0 . 648434328104455 α18 = 0 . 154630724596458 α28 = −0 . 0024361150534464 

w 3 = 1 . 471428571428572 w 4 = 0 . 7393931878306879 w 5 = 1 . 082473544973545 

α30 = −0 . 08629153295973042 α40 = 0 . 04666741189303745 α50 = 0 . 1545229278707249 

α31 = 0 . 7141417874873672 α41 = −0 . 3828631046681091 α51 = −1 . 176309860878165 

α32 = −2 . 74 94 96256205785 α42 = 1 . 4066 8753300504 9 α52 = 3 . 838129674155415 

α33 = 4 . 048992512411571 α43 = −3 . 213375066010097 α53 = −6 . 876 824222306 842 

α34 = −4 . 373740640514463 α44 = 3 . 016718832512621 α54 = 6 . 86368547404324 

α35 = 3 . 998992512411571 α45 = −1 . 613375066010097 α55 = −4 . 712134614626217 

α36 = −2 . 082829589539119 α46 = 1 . 0066 8753300504 8 α56 = 1 . 973722503472796 

α37 = 0 . 6069989303445101 α47 = −0 . 3066726284776329 α57 = 0 . 1402763154879514 

α38 = −0 . 0767677234359209 α48 = 0 . 0395245547501803 α58 = −0 . 25779890216368 

α59 = 0 . 0527307049447768 

w 6 = 0 . 9886326058201058 

α60 = −0 . 1169355928394403 

α61 = 0 . 8742458553587963 

α62 = −2 . 780755136713333 

α63 = 4 . 795937631999022 

α64 = −4 . 557263616542921 

α65 = 1 . 463970703555345 

α66 = 0 . 152306568075446 

α67 = 0 . 02309551624469717 

α68 = 0 . 1718256962556173 

α69 = −0 . 02281513218755944 

α610 = −0 . 003612493205669607 

Table A.9 

Scheme T 4: optimized boundary coefficients for conservative 3 rd order compact first derivative 

approximation with 4 th order tridiagonal interior scheme. 

w 0 = −0 . 2282140125155382 w 1 = 5 . 966147122794405 w 2 = 1 . 798431523850588 

β0 , 1 = 17 . 82069083331248 β1 , −1 = 0 . 0990766937835805 β2 , −1 = 0 . 25 

α00 = −7 . 77356361110416 β1 , 1 = −0 . 2027699186492585 β2 , 1 = 0 . 25 

α01 = −5 . 910345416656241 α10 = −0 . 54 876 8925044774 α21 = −0 . 75 

α02 = 16 . 32069083331248 α12 = 0 . 75 α23 = 0 . 75 

α03 = −2 . 63678180555208 α13 = −0 . 201231074955226 

Table A.10 

Scheme T 6: optimized boundary coefficients for conservative 5 th order compact first deriva- 

tive approximation with 6 th order tridiagonal interior scheme. 

w 0 = −0 . 07171661720728502 w 1 = 1 . 272166070449745 

β0 , 1 = 6 . 736 8324 94 85278 β1 , −1 = 0 . 4885251620537967 

α00 = −3 . 630699832303889 β1 , 1 = 2 . 7185849538713 

α01 = −2 . 298235202757178 α10 = −1 . 179536538995937 

α02 = 8 . 47366498970556 α12 = −1 . 34 8820794 89275 

α03 = −3 . 403499161519447 α13 = 3 . 347002160717289 

α04 = 0 . 9956108316175933 α14 = −0 . 9569693577017375 

α05 = −0 . 136841624742639 α15 = 0 . 138324530873136 

w 2 = −3 . 628896666385055 w 3 = −2 . 532048718637736 

β2 , −1 = −0 . 3891997445794 β3 , −1 = −0 . 5719411698333015 

β2 , 1 = −1 . 111732822492133 β3 , 1 = −0 . 1193039182499841 

α20 = 0 . 1648977096656178 α30 = −0 . 06789558773749761 

α21 = −0 . 35630014899535 α31 = 0 . 5757385576666454 

α23 = 1 . 018622137082022 α32 = −0 . 9286568616388836 

α24 = −0 . 9355996594392 α34 = 0 . 5137393810208426 

α25 = 0 . 10837996168691 α35 = −0 . 09292548931110686 

A

 

s  

b  

f  

T  

u

ppendix B. Comparison schemes 

In this work, the performance of the presently developed

chemes are compared with others in the literature which have
een labeled S 1, S 2, and S 3. Details of the schemes may be

ound in Section 4 . The coefficients of S 1, S 2, and S 3 are given in

ables B.11,B.12 , and B.13 , respectively. In addition, S 3 utilizes the

nique interior discretization shown in Table B.14 
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Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.compfluid.2018.12.010 .
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